Assessing reliable COVID-19 infected number: the Italian case

GIUSEPPE TRADIGO, PIETRO H. GUZZI, PIERANGELO VELTRI, University of Catanzaro, Italy
TAMER KAHVECI, University of Florida, USA

ACM Reference Format:

COVID-19 (SARS-CoV-2) is a pandemic disease the world is currently managing. A lot of infected people, as we show in this article, is not detected. Furthermore, among the infected population, a subset of patients are detected at very late stages of the infection. It is important to track real numbers for the evolution of the pandemic disease [3, 4]. Starting from mortality rates of diseases caused by viruses in the same family (e.g. MERS, SARS, H1N1), we study the relationship between the (real) number of COVID-19 infections and the number of deaths, through Italian regions. We provide a method to assess reliable Italian COVID-19 infection numbers, also at regional scale. The method can be used by other countries in similar contexts in the next future [1]. In all countries the critic part is related to ICU resources [5].

The percentage of deaths, i.e. Case Fatality Rates (CFR), measured for other viruses in the Coronaviridae family are the following: (i) virus subtype H5N1 = 60.0%; (ii) Middle Eastern Respiratory Syndrome (MERS) = 35.0%; (iii) Severe acute respiratory syndrome (SARS) = 11.0%; (iv) Coronavirus disease 2019 (COVID-19) = ~ 4.3%; (v) Spanish (1918) flu = ~ 2.5%. We observe that CFR values measured in Italy during the COVID-19 emergency are much higher than what virologists agree on [6]. Hence, starting from acceptable CFR values scenarios (i.e. 1%, 2% and 3%), we derive more realistic number of infections by exploiting the only real variable measurable (i.e. number of deaths) for those CFR percentage levels.

By using Italian infection data at April 2020¹, we report a total of 132,547 cases (from 721,732 swab tests), of which 93,187 positives, 16,523 deaths and 22,837 recovered patients. By analysing the CFRe, we observe a value starting from low figures and increasing towards levels near 18%. We simulate three scenarios for CFR (1%, 2% and 3%), as reported in Figure 1 in which we give an idea of the difference between measured data versus more realistic one. We estimate the real total infections, e.g. in the 1% scenario, by considering the total positive COVID-19 cases measured (i.e. 93,187) and the number of deaths (i.e. 16,523). For these two values, the resulting CFR would be $CFR = 17.7\%$, which is heavily affected by the above mentioned bias. Hence, we consider the number of deaths (7,503) as being true and, for each scenario, we calculate the total infections (e.g. $CFR = 1\%$, we obtain 1,652,300 infections, see Figure 1).

¹http://www.salute.gov.it/nuovocoronavirus

Authors’ addresses: Giuseppe Tradigo, Pietro H. Guzzi, Pierangelo Veltri, surname@unicz.itUniversity of Catanzaro, Italy; Tamer Kahveci, tamer@cise.ufl.eduUniversity of Florida, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.
Manuscript submitted to ACM
Fig. 1. Data reprojections with respect to three Case Fatality Rates (CFR) scenarios (1%, 2% and 3%) for Coronaviridae virus. Left figure represents current total infections in Italy calculated for each CFR scenario. Right figure reprojects infection curves in the interval February 24\(\text{th}\) - April 6\(\text{th}\) 2020.

Finally, in right part of Figure 1 we show the measured total infections (Y axis) per day (X axis) in the official dataset (blue line) and in the projected CFR scenarios (red yellow and green lines) resulting in this study. Reported values are the trends of the total infections for each day (on the x axis) of the emergency. Please note that the y axis, which reports the number of infections, is logarithmic. These trends show how the number of infected has been heavily underestimated over time. The calculated scenarios are in fact higher than the measured ones by an order of magnitude from the early days towards the end of the time window (∼ 40 days later). In [2] we report the whole information about how our method is applied at regional scale.

REFERENCES

